

Mars Ascent Vehicle Concept – Overview and Aeroheating/Thermal Protection System Design

Marcus Lobbia¹

Co-Authors: Ashley Korzun,² Joel Benito,¹ and Robert Shotwell¹

- ¹ Jet Propulsion Laboratory, California Institute of Technology
- ² NASA Langley Research Center
- © 2017 California Institute of Technology. Government sponsorship acknowledged.

Introduction

- Significant progress toward Mars Sample Return (MSR) identified as one of the highest-priority goals in the Planetary Sciences Decadal Survey (2011)
- NASA and JPL are conducting development activities to mature MSR-related technologies
 - Sampling system design trades
 - Mars Ascent Vehicle (MAV) concept design trades
 - MAV Lander concept design trades
 - and more…

Objective: Provide an overview of the MAV design space, with a focus on recent aeroheathing/TPS design trades

Potential Mars Sample Return – Notional Architecture

MAV Studies Tradespace

- Lander Trades
 - Mobile MAV vs Fetch Rover
 - Affects packaging volume and mass
 - RTG vs Solar Power
 - Affects MAV thermal limits and lander power /energy reqs
- Mission Trades
 - Landing site and target altitude (site for Mars 2020 will be chosen by Science)
 - Size of payload (will be driven by Mars 2020 tube design and additional requirements assigned to OS)
- MAV trades
 - Type of prop to use (solids, hybrids, liquids)
 - RCS approach (cold gas, warm gas, passive stabilization, mixed)
 - Internal redundancy (single string vs selected redundancy vs block)
 - Staged vs SSTO
 - Faired or direct payload
 - Vertical vs inclined launch

Orbiting Sample Concept

- The payload for the MAV would be the Orbiting Sample (OS)
- The OS is assumed to be mounted to the MAV when it departs from Earth
- As the number and size of samples to be returned grows, the OS grows as well
 - Drives MAV size and mass
- MAV assumes
 Thermal Protection
 System (TPS)
 material on forward
 hemisphere
 - No Fairing

24 cm

MAV Mission Concept Definition

- Mission concept objectives and constraints:
 - Consider candidate M2020 landing sites
 - Launch from any latitude |φ|<30 deg
 - Launch from any elevation > -2.5 km
 - Inject OS into a 479x479 km altitude orbit,
 - Periapse altitude above 300 km altitude, to ensure at least a decade of orbital lifetime and reduce requirements on rendezvous orbiter
- Mission concept phases:
 - Pre-launch: warm up, OS loading, erection, system initialization, pyros fired
 - Liftoff: full thrust, climb until clearing the launch tube
 - First burn: trajectory steered using Thrust Vector Control (TVC) to aim at target Main Engine Cut Off (MECO) conditions
 - Coast: unpowered flight; vehicle controlled with RCS
 - Second burn: orbit circularization/injection
 - OS release
 - Post release maneuvers

MAV Point of Departure (PoD) Configuration

- Notional MAV uses a hybrid propulsion system with MON30 oxidizer and SP7 (wax-based) fuel
 - Allows for storage temperatures as low as -72C, reducing power requirements for an MSR Lander while on the surface of Mars

Ascent through Mars atmosphere and delivery of OS to orbit requires a robust MAV design

MAV Example Ascent Trajectories

MAV ascent trajectory leads to different environments than typical entry

Ascent Aeroheating

- Heating based on 99% heat load trajectory
- CFD-based aerothermal environments
 - LAURA-5 code; axisymmetric geometry, laminar flow
 - Radiative equilibrium wall (ε = 0.8), super-catalytic
 - 8-species, one-temperature model

Heating is small relative to entry vehicles, but still requires consideration of TPS

TPS Design – PoD Design

- PoD TPS design assumed use of Shuttle tile material
 - TUFI-infiltrated FRCI-12 tile
 - TUFI provides impact resistance/robustness
 - Assumed 4 mm minimum thickness due to tile friability
 - RTV-560 adhesive
 - Composite substructure with standoffs
- 1D transient thermal analysis
 - CFD-based aerothermal environments w/25% margin

PoD TPS choice was primarily driven by handling considerations; thickness by manufacturability assumptions

TUFI: Toughened Unipiece Fibrous Insulation FRCI: Fibrous Refractory Composite Insulation

			TUFI / FRCI-12		
Dens	Mass	Vol		Tb	Tfinal
kg/m3	kg	m3		in	cm
1.31E+03	0.42713	3.26E-04	TUFI	0.1000	0.2540
1.92E+02	0.03498	1.82E-04	FRCI-12	0.0575	0.1460
1.43E+03	0.03584	2.51E-05	RTV-560	0.0080	0.0203
1.80E+03	0.43684	2.43E-04	Composite Substructure	0.0787	0.2000
		3.51E-04	standoff		0.3000
Total	0.93480	kg			
			Total	Thickness	0.9203
				Current	Limit
			Peak Surface Temp, C	743	1482
			Peak Bondline Temp, C	225	312

Other TPS Material Options

- Currently investigating standoff TPS design using hightemperature metallic materials
 - Potential benefits in manufacturability and robustness
 - Options analyzed so far: Beryllium, Niobium, Titanium, Inconel
- Also planning to assess Carbon/Carbon composite structures in near future as well

Beryllium TPS sizing example:

			Beryllium						
Dens	Mass	Vol			Tb	Tfinal	w/FoS	Mass	
kg/m3	kg	m3			in	cm	cm	kg	in
2.64E+03	0.04122	1.56E-05	AZ-2100-IECW White Paint		0.0050	0.0127	0.0127		0.0050
1.84E+03	0.40474	2.20E-04	Beryllium		0.0714	0.1812	0.1812		0.0714
			Standoff gap			0.3000	0.3000		
Total	0.44596	kg					,		
				Total	Thickness	0.4939	0.4939		
					Current	Limit			
			Peak Surface Temp, K		811	1273	AZ-2100-IECW White Pair		e Paint
			Peak Bondline Temp, K		811	811	Beryllium		

Conclusions and Future Work

- MAV design studies continuing
 - Trades/analyses (e.g., GN&C, propulsion)
 - Preparation for proposed Earth demo flight in 2019
- MAV aeroheating/TPS
 - Continue aeroheating trades/analyses
 - Revisit ejectable TPS for on-orbit thermal control
 - Sample tube loading approach vs. MAV/OS skirt design
 - Continue to assess TPS alternatives
 - Need material robustness yet low mass
 - On-orbit thermal considerations also important

Proposed MAV Tech Demo Plans

- Key objectives:
 - Measure environments at Mars-relevant conditions
 - Test out MAV technologies (e.g., LITVC, hybrid propulsion)
- Launch MAV vehicle from a high altitude balloon at ~30 km altitude
 - Balloon inflation and liftoff from a barge at sea
 - Barge is 400 ft long to accommodate flight train
 - Recovery of balloon and MAV demo vehicle

jpl.nasa.gov